
TJHSST Computer Systems Research Lab 2019
Senior Research

RLAIT: a Reinforcement Learning Artificial
Intelligence Testbed
Jack Duvall

Abstract

Machine Learning is a growing field of Computer Science, and a particular subset, Reinforcement Learning, is
particularly promising because it allows computers to learn a task without prior human experience. This paper
puts forth a framework defining the abstract components of Reinforcement Learning and the progress made on
filling in that framework with various problems to be solved (Tasks) and algorithms to solve them (Approaches).
Focusing on gameplay-oriented tasks and the recently developed general-purpose algorithm AlphaZero, RLAIT
shows some promise as a unifying framework for describing Reinforcement Learning.
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1. Introduction
Machine Learning is a growing field of Computer Science,
and a particular subset, Reinforcement Learning (RL), is par-
ticularly promising. By allowing computers to generate and
learn from experiences on their own, many difficult tasks can
be solved without any sort of human expert help. However, it
can be challenging to contrast the performance of different RL
algorithms on the same problem, especially if the algorithms
were developed in different domains.

My solution, the Reinforcement Learning Artificial In-
telligence Testbed (RLAIT), aims to solve that problem by
providing a consistent, flexible interface to describe general
tasks and accommodate RL algorithms learning those tasks.
The primary goal of RLAIT is to provide a high-level repre-
sentation of RL and associated tasks; my project is novel in
that it focuses on the representation of multi-agent tasks.

Two notable existing projects with similar goals are the
OpenAI Gym [3] and Facebook’s Extensible, Lightweight
Framework (ELF) [10]. OpenAI Gym is more targeted to-
wards real-time, single-agent tasks, and ELF I found too cum-

bersome in its beta stage to use, so I ended up writing my own
framework.

While I was not able to produce an AI with superhuman
game-playing capabilities using my framework, I did gain a lot
of experience and familiarity with Reinforcement Learning my
implementing the algorithms myself. More than just applying
them, I am now able to grasp why they do what they do.

2. Methods
2.1 Framework
Before I got around to actually coding any RL Algorithms, I
first designed the basic framework in which I would program.
Here, I define some key vocabulary which I use in the rest of
the paper:

Approach Any RL algorithm
Task Anything you want an RL algorithm to do
State All the information about the ”world” of a Task
Move A description of how to move from one State to the

next
History A list of States and Moves describing a complete run

of a Task

States, Moves and Histories are just data containers which
Approaches and Tasks act upon. A relationship diagram is as
follows:

Approach State Task

Move

History

returns

accepts

accepts

returns

accepts

lists

lists

For my framework, I mostly focused on board games as
tasks. This is because I wanted to try the AlphaZero algorithm
[9], which claimed to be generalizable to any Task.

https://github.com/openai/gym
https://github.com/pytorch/ELF
https://github.com/pytorch/ELF
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Approach API

approach name A string containing the name of the cur-
rent Approach.
init to task(state) Customizes an Approach to work
on a specific Task.
get move(state) Gets a move the Approach will play
for the passed in State.
save weights(filename) Saves the Approach’s cus-
tom learned data (Neural Network weights, Q-table) to a file.
load weights(filename) Restores the custom learned
data from a file.
save history(filename) Saves the current observed
History to a file.
load history(filename) Loads a previous observed
History from a file.
test once() Runs a single bout of self-play, appending to
the current History.
train once() Runs a single bout of training. For differ-
ent Approaches, this can have different side-effects, rang-
ing from calling test once multiple times and automati-
cally calling save weights to only observing one game.

Figure 1. The methods and properties each Approach must
implement

As I was developing, these APIs went through a few revi-
sions to match the full functionality I needed. They ended up
staying fairly close to my original plan, though.

2.2 Hardware
During my research, I had access to a couple of powerful
machines to run my code on.

1. ASM

• Operating System: Arch Linux
• RAM: 12 GB
• CPU: Intel i7 920 @ 2.67 GHz, 4 physical, 8

logical cores
• GPU: 2x NVIDIA GTX TITAN

2. Duke

• Operating System: Ubuntu Linux 18.04 LTS
• RAM: 16 GB
• CPU: AMD Ryzen 7 1700 @ 3 GHz, 8 physical,

16 logical cores
• GPU: 2x NVIDIA 1080Ti

I was extremely fortunate to be able to use these machines
for unlimited time at no cost, being able to configure them
however I wanted. Still, I was not expecting to match the
cutting-edge results, which use thousands of nodes just like
these.

2.3 Software
For my programming language, I chose Python due to my
familiarity with it and its large repository of Neural Network

Task API

task name A string containing the name of the Task.
num phases How many phases, ie different sets of rules
defining States and Tasks returned, are contained in the Task.
An example is the setup phase versus playing phase of Strat-
ego, or the different betting phases of Poker.
num players How many independent agents this Task will
have.
empty move(phase)Returns the default Move for a given
phase.
empty state(phase) Returns the default State for a
given phase.
iterate all moves(phase) Yields all possible Moves
for a given phase, even illegal ones.
iterate legal moves(state) Yields all the legal
Moves for a given State.
get legal mask(state) Returns a binary mask which
can be applied to the output of iterate all moves to
filter out the legal ones. The reason for providing so many
different interfaces to do the same thing is to accommodate
all Approaches.
get canoncial form(state) Gets the canonical form
of a state, normalized for how the current player would ”see”
the board as though they think they are the first player.
apply move(state, move) Returns the updated State
after the Move is applied. Will throw an error if the Move is
illegal.
is terminal state(state) Checks if the State is ter-
minal, i.e. the game is over.
get winners(state) Returns the set of all winning play-
ers of a terminal State. If there are no winners or the State is
non-terminal, returns an empty set.
state string representation(state) Returns a
unique string representing a State. Suitable for acting as a key
in tables/mappings.
move string representation(state, move)
Returns a unique string representing a Move to be applied to
a specific State. Again suitable for acting as a key. Whether
or not this differs by phase or State depends on the Task type.
string to move(move str, state) Reconstructs
the Move for a given State based on its string representation.

Figure 2. The methods and properties each Task must
implement

utilities. For the majority of my research, I used the following
libraries:

• CUDA 9.0
• cuDNN 7.2
• Tensorflow 1.12
• Keras 2.2.4
• Python 3.6.8

I used the Anaconda virtual environment software to in-

https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/cudnn
https://www.tensorflow.org/
https://keras.io
https://www.python.org/
https://www.anaconda.com/distribution/
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State and Move API

Note: States and Moves are both subclasses of
numpy.ndarrays and are mostly used as such. Task im-
plementations may also extend States and Moves to store
their custom data as well, but the data in the array is all any
Approach will see.
task name String containing the name of the corresponding
Task
type Integer describing how the data inside the ndarray is
laid out. Has 4 options: {0: ’flat’, 1: ’rect’,
2: ’deepflat’, 3: ’deeprect’}
phase Integer in the range [0,Task.num phases) corre-
sponding to the current phase.
next player Integer in the range
[0,Task.num players) corresponding to
the player who will make the next Move

Figure 3. Standard properties for each State and Move

stall these packages and all their dependencies, ensuring a
consistent, stable, and reproducible environment across any
system.

2.4 Task Implementations
In addition to defining my API, I also used it to implement
various games for AIs to learn. The following sections are
ordered by increasing complexity.

2.4.1 Simplest Task
Just about the simplest Task I could think of that wouldn’t be
too easy. In it, the first player plays a number in the range 1 to
4, which the second player then has to match. If they match,
the second player wins; if they don’t, the first player does.

Having something this simple allowed me to verify my
Approaches worked at all, and debug them if they didn’t.

2.4.2 Uno
Uno is a card game supporting a near-arbitrary number of
players [5]. Each player starts with a hand of 7 cards. On their
turn, they can play a card that matches the color or number of
card in the center pile, or draw a card. The first person to play
all the cards in their hand wins. I used a slight variation to the
rules in that there are no special cards and no playing a card
after you draw.

Uno was my only game that supported more than 2 players,
helping me make sure my Approaches did generalize to multi-
agent games. Uno’s hidden information (you can’t see what
cards your opponent has) but simple rules also helped test
hidden information compatibility.

2.4.3 Othello
Othello is a 2-player board game played with reversible black
and white pieces [2]. It can be played on any NxN board
where N is an even number greater than 2. Starting from a
small 2x2 checker formation in the center, the players take

turn bracketing each others pieces to flip them over until no
more moves can be made. The winner is the player with the
most pieces on the board at the end of the game.

Othello is a classic AI problem, one I already had a tem-
plate set up for too. Implementing it as a Task was fairly
straightforward too once I had the Task API completed.

2.4.4 Go
Go is a complex strategy game played on large board sizes,
up to 19x19 [1]. Its rules and strategies are fairly complicated,
stemming around the idea of capturing territory with your
own stones while simultaneously preventing your opponent
from doing the same. Notably, AlphaZero claims to achieve
superhuman performance on this Task in only a few days [9].

I didn’t expect to achieve superhuman performance on my
machines. Instead, I included Go just to see if the Approaches
could learn any of it at all.

2.4.5 Stratego
Stratego is a 2-player board game [4]. Both players set up
their army, then wage war until the enemy flag is taken or all
the enemy pieces are captured. Each player can see the value
of their own pieces, but not the opponent. Pieces with higher
power generally take pieces of lower power, except for the
1 piece being able to take the 10 piece. Pieces can move 1
space in any compass direction if it is unoccupied, or attack
in a compass direction. There are also a few extra rules, like
3s being able to destroy bombs, stationary pieces that destroy
any other piece, and 2s being able to move more than once in
a given direction.

Originally, testing hard hidden-information problems was
my main goal. That is why I started out with Stratego.

Implementing Stratego helped me expand and refine my
API. The canonical form function and the move iteration
functions were not in my original draft, but were necessitated
by the complexity of the task. I also had to get creative
with my handling of moves; encoding a starting and ending
destination cleanly turned out to be a challenge.

2.5 Approach Implementations
Implementing Tasks meant nothing if I didn’t also have Ap-
proaches to test them with. The sections are again ordered by
increasing complexity.

2.5.1 Random
A random Approach is relatively straightforward: given a list
of all the allowed Moves for a given State, return a random
one. This just let me programmatically test my other AIs
against a baseline.

2.5.2 Q-Learning
Q-Learning is an algorithm that takes in samples of State-
Move pairs along with the ”reward” for that pair and computes
a policy, stored in the function Q, that is guaranteed to return
the best Move given enough examples [6]. The Q update

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
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procedure I used goes like this:

Qnew(st ,at)← (1−α) ·Q(st ,at)︸ ︷︷ ︸
old value

+

α︸︷︷︸
learning rate

·

learned value︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1,a)︸ ︷︷ ︸
estimate of optimal future value

)

(1)

The rationale behind this is to iteratively update the func-
tion as it sees new things, while still ”remembering” what it’s
seen in the past. It doesn’t matter too much how it sees new
examples, only that it sees infinitely many of them [6]. Intu-
itively, this makes sense because at the algorithm goes along,
it keeps being able to optimize for both the future rewards it’s
seen as well as the specific action awards it knows.

2.5.3 AlphaZero
AlphaZero is a clever form of Deep Q-Learning, a category
of Reinforcement Learning that uses Neural Networks to ap-
proximate a Q-table. What’s special about AlphaZero is how
it uses Monte Carlo Tree Search (MCTS) and Evolutionary
Algoritm (EA) ideas to achieve its superhuman performance
on tasks such as Go, Chess, and Shogi [9].

The bulk of my research was centered around AlphaZero,
specifically getting it to work with the RLAIT framework in
Python. I based my work off a previous general AlphaZero
Python implementation [8], with heavy modifications.

As explained in [7] and [9], the training of AlphaZero is
divided into repeatable parts called iterations. Each iteration
contains 3 distinct steps:

• Self-play
• Neural Network Training
• Arena play

Self-play In this step, AlphaZero generates all of its training
data. The finer details of how AlphaZero searches the State-
Move tree to find the best move is described later in the Monte
Carlo Tree Search section. The number of games to play
against itself can be configured, but it must be divisible by the
number of players in a task (so that it runs as each player).
The arena play step can also be skipped entirely with minimal
loss of strength [9].

Neural Network Training After each self-play, the batch of
training data generated is added to the cumulative training
history. The number of epochs, histories to remember, and
optimizer can be configured when initializing the Approach.

Arena Play Arena play is one of the more important steps
distinguishing AlphaZero from other algorithms. In order
to make sure there are no regressions in model strength, Al-
phaZero plays the models from before and after training a
configurable number of times, usually less than the self-play
unmber, using the majority winner for the next iteration.

Monte Carlo Tree Search Another important part of Alp-
haZero (and its immediate predecessors) are it’s modification
to Monte Carlo Tree Search (MCTS) that effectively lets it
learn ”how” to search the state space. Each step of MCTS
consists of traversing the State tree until it hits an unexplored
State, then propagating the updated values back through the
tree [9]. At each searched State, AlphaZero chooses the next
move to explore by maximizing equation 2, as explained in
[7]:

• s: current state
• a: action from state
• Q(s,a): expected reward from action
• N(s,a): number of times action was explored
• P(s, ·) = ~pθ (s): expected reward as returned by Neural

Network
• cpuct : exploration factor, default set to 1.0

U(s,a) = Q(s,a)+ cpuct ·P(s,a) ·
√

ΣbN(s,b)
1+N(s,a)

(2)

Q and N are initially set to 0 for all a. Each time the
network does take an action, producing state s′, the value
vθ (s) returned by the neural network is propagated up the Q
tree in a min-max fashion, unless there is a terminal state (+1
for win, -1 for loss).

At the end of exploration, we have a vector ~π(s) repre-
senting the normalized counts of exploration from any State
in the History, N(s, ·)1/τ/Σb(N(s,b)1/τ). τ is a variable repre-
senting how likely the network is to explore random moves.
One implementation of AlphaZero sets τ = 1 for the first few
moves (again, configurable exactly how many) to get normal-
ized move counts, allowing it to potentially try new strategies,
then to τ = 0 to simply get the maximum counted move. ~π(s)
and the eventual game outcome are added to the training data
to train ~pθ (s) and v(s) respectively [7].

A sample AlphaZero Neural Network architecture that I
applied is shown in figure 4

3. Results and Discussion
While I spent a long time programming all these Tasks and
Approaches, I did not have too much time to do much testing.
In spite of this, I did get a few good graphs.

Figure 5 shows some preliminary results from testing the
implementation of AlphaZero in [8] on 8x8 Othello. This was
before it was completely integrated into RLAIT. The left chart
shows the number of wins it attained per iteration versus a
suite of α−β tree search AIs written by humans. The right
charts shows the amount of the board AlphaZero was able to
capture in the end. The trend is weak, but AlphaZero does
appear to get better as it learns more.

Figure 6 shows AlphaZero vs Q-Learning on Othello 6x6
after both Approaches and the Othello Task were incorporated
into RLAIT. As you can see, there does not appear to be any
trend. Neither AlphaZero nor Q-Learning improve against the
other as they train more.



RLAIT: a Reinforcement Learning Artificial Intelligence Testbed — 5/7

These results are not indicative of AlphaZero or Q-Learning
as algorithms, because I may have implemented them or Oth-
ello incorrectly. Without proper units tests (which I unfortu-
nately did not write), it is hard to say. I had an unexpectedly
tough time rooting out such implementation errors, which is
why this report does not contain more results; too long was
spent fixing small errors, leaving too little time to fully train
more RL Approaches.

4. Conclusions and Open Questions
Reinforcement learning is a hot subfield of Machine Learning
due to its massive potential to produce extremely intelligent
algorithms without the upfront effort of collecting human
expertise. This project was a learning experience, teaching me
the basics of RL and how it can be represented in an abstract,
object-oriented manner, all by building a framework around
those ideas. This framework contributes a more technically
definition of the object names like State, Task, and Move
already in use. It also provides a well-, if not fully-developed
Python framework to support those definitions. Some general
improvements to AlphaZero, like a value vector and random
play initialization, were also introduced.

One open question that I hoped to answer with this re-
search, but didn’t get around to, was the question of whether
or not AlphaZero could adapt to hidden information games.
Areas of future study include fully developing RLAIT to an-
swer the previous question and implementing the AlphaStar
Approach as put forth by DeepMind in [11].
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Board input (8x8)

Conv2D, padding=same

Batch Normalization

ReLU

Conv2D, padding=none

Batch Normalization

ReLU

Dense (1024) Batch Normalization + Dropout ReLU

Dense (512) Batch Normalization + Dropout ReLU

Dense (action size) Dense (1)

Softmax Tanh

~p v

x2

x2

Figure 4. Default Open-source AlphaZero Othello Neural
Network
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Figure 5. First Graph

Figure 6. Second Graph
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